Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.10.12.23296928

ABSTRACT

At the beginning of 2021 the monitoring of the circulating variants of SARS-CoV-2 was established in Germany in accordance with the Corona Surveillance Act (discontinued after July 2023) to allow a better containment of the pandemic, because certain amino acid exchanges (especially) in the spike protein lead to higher transmission as well as a reduced vaccination efficacy. Therefore, our group performed whole genome sequencing applying the ARTIC protocol (currently V4) on Illumina's NextSeq 500 platform (and starting in May 2023 on the MiSeq DX platform) for SARS-CoV-2 positive specimen from patients of the Heidelberg University Hospital (and associated hospitals) as well as the Public health office in Rhine-Neckar/Heidelberg region. Our group sequenced a total of 26,795 SARS-CoV-2-positive samples between January 2021 and July 2023 - valid sequences, according to the requirements for sequence upload to the German electronic sequencing data hub (DESH) operated by the Robert Koch Institute (RKI), could be determined for 24,852 samples, while the lineage/clade could be identified for 25,912 samples. While the year 2021 was very dynamic and changing regarding the circulating variants in the Rhine-Neckar/Heidelberg region with the initial non-variant of concerns, followed by A.27.RN and the rise of B.1.1.7 in winter/spring and its displacement by B.1.617.2 in spring/summer, which remained almost exclusive until the beginning of December and the first B.1.1.529 incidences, which rose to a proportion of 40 percent by the end of 2021 (and superseded B.1.617.2 by January 2022 with a proportion of over 90 percent). The years 2022 and 2023 were then dominated by B.1.1.529 and its numerous sublineages, especially BA.5 and BA.2, and more recently by the rise of recombinant variants, such as XBB.1.5. By the end of July 2023 (and since calendar week 20) the proportion of the recombinant variants amounted to 100 percent of all circulating variants in the Rhine-Neckar/Heidelberg region.

2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.10.22280850

ABSTRACT

Cancer patients are at high risk of severe COVID-19 with high morbidity and mortality. Further, impaired humoral response renders SARS-CoV-2 vaccines less effective and treatment options are scarce. Randomized trials using convalescent plasma are missing for high-risk patients. Here, we performed a multicenter trial (https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001632-10/DE) in hospitalized patients with severe COVID-19 within four risk groups (1, cancer; 2, immunosuppression; 3, lab-based risk factors; 4, advanced age) randomized to standard of care (CONTROL) or standard of care plus convalescent/vaccinated anti-SARS-CoV-2 plasma (PLASMA). For the four groups combined, PLASMA did not improve clinically compared to CONTROL (HR 1.29; p=0.205). However, cancer patients experienced shortened median time to improvement (HR 2.50, p=0.003) and superior survival in PLASMA vs. CONTROL (HR 0.28; p=0.042). Neutralizing antibody activity increased in PLASMA but not in CONTROL cancer patients (p=0.001). Taken together, convalescent/vaccinated plasma may improve COVID-19 outcome in cancer patients unable to intrinsically generate an adequate immune response.


Subject(s)
Neoplasms , COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.27.22276704

ABSTRACT

Throughout the current SARS-CoV-2 pandemic, limited diagnostic testing capacity prevented sentinel testing of the population, demonstrating the need for novel testing strategies and infrastructures. Here, we describe the set-up of an alternative testing platform, which allows scalable surveillance testing as an acute pandemic response tool and for pandemic preparedness purposes, exemplified by SARS-CoV-2 diagnostics in an academic environment. The testing strategy involves self-sampling based on gargling saline, pseudonymized sample handling, automated 96-well plate-based RNA extraction, and viral RNA detection using a semi-quantitative multiplexed colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with an analytical sensitivity comparable to RT-quantitative polymerase chain reaction (RT-qPCR). We provide standard operating procedures and an integrated software solution for all workflows, including sample logistics, LAMP assay analysis by colorimetry or by sequencing (LAMP-seq), and communication of results to participants and the health authorities. Using large sample sets including longitudinal sample series we evaluated factors affecting the viral load and the stability of gargling samples as well as the diagnostic sensitivity of the RT-LAMP assay. We performed >35,000 tests during the pandemic, with an average turnover time of fewer than 6 hours from sample arrival at the test station to result announcement. Altogether, our work provides a blueprint for fast, sensitive, scalable, cost- and labor-efficient RT-LAMP diagnostics. As RT-LAMP-based testing requires advanced, but non-specialized laboratory equipment, it is independent of potentially limiting clinical diagnostics supply chains.

4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.14.22272316

ABSTRACT

Background: Post-acute sequelae of SARS-CoV-2 infection have commonly been described after COVID-19, but few population-based studies have examined symptoms six to 12 months after acute SARS-CoV-2 infection and their associations with general health recovery and working capacity. Methods: This population-based retrospective cohort study in four geographically defined regions in southern Germany included persons aged 18-65 years with PCR confirmed SARS-CoV-2 infection between October 2020 and March 2021. Symptom frequencies (six to 12 months after versus before acute infection, expressed as prevalence differences [PD] and ratios [PR]), symptom severity and clustering, risk factors and associations with general health recovery, and working capacity were analysed. Findings: Among a total of 11,710 subjects (mean age 44.1 years, 59.8% females, 3.5% previously admitted with COVID-19, mean follow-up time 8.5 months) the most prevalent symptoms with PDs >20% and PRs >5% were rapid physical exhaustion, shortness of breath, concentration difficulties, chronic fatigue, memory disturbance, and altered sense of smell. Female sex and severity of the initial infection were the main risk factors. Prevalence rates, however, appeared substantial among both men and women who had a mild course of acute infection, and PCS considerably affected also younger subjects. Fatigue (PD 37.2%) and neurocognitive impairment (PD 31.3%) as symptom clusters contributed most to reduced health recovery and working capacity, but chest symptoms, anxiety/depression, headache/dizziness and pain syndromes were also prevalent and relevant for working capacity, with some differences according to sex and age. When considering new symptoms with at least moderate impairment of daily life and [≤]80% recovered general health or working capacity, the overall estimate for post-COVID syndrome was 28.5% (age- and sex-standardised rate 26.5%). Interpretation The burden of self-reported post-acute symptoms and possible sequelae, notably fatigue and neurocognitive impairment, remains considerable six to 12 months after acute infection even among young and middle-aged adults after mild acute SARS-CoV-2 infection, and impacts general health and working capacity.


Subject(s)
Anxiety Disorders , Acute Disease , Pain , Dyspnea , Fatigue Syndrome, Chronic , Dizziness , Cognitive Dysfunction , COVID-19 , Fatigue
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.02.20242628

ABSTRACT

McQ is a SARS-CoV-2 quantification assay that couples early-stage barcoding with high-throughput sequencing to enable multiplexed processing of thousands of samples. McQ is based on homemade enzymes to enable low-cost testing of large sample pools, circumventing supply chain shortages. Implementation of cost-efficient high-throughput methods for detection of RNA viruses such as SARS-CoV-2 is a potent strategy to curb ongoing and future pandemics. Here we describe Multiplexed SARS-CoV-2 Quantification platform (McQ), an in-expensive scalable framework for SARS-CoV-2 quantification in saliva samples. McQ is based on the parallel sequencing of barcoded amplicons generated from SARS- CoV-2 genomic RNA. McQ uses indexed, target-specific reverse transcription (RT) to generate barcoded cDNA for amplifying viral- and human-specific regions. The barcoding system enables early sample pooling to reduce hands-on time and makes the ap-proach scalable to thousands of samples per sequencing run. Robust and accurate quantification of viral load is achieved by measuring the abundance of Unique Molecular Identifiers (UMIs) introduced during reverse transcription. The use of homemade reverse transcriptase and polymerase enzymes and non-proprietary buffers reduces RNA to library reagent costs to 92 cents/sample and circumvents potential supply chain short-ages. We demonstrate the ability of McQ to robustly quantify various levels of viral RNA in 838 clinical samples and accu-rately diagnose positive and negative control samples in a test-ing workflow entailing self-sampling and automated RNA ex-traction from saliva. The implementation of McQ is modular, scalable and could be extended to other pathogenic targets in future.

6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.19.20214916

ABSTRACT

Background: The emerging SARS-CoV-2 pandemic entails an urgent need for specific and sensitive high-throughput serological assays to assess SARS-CoV-2 epidemiology. We therefore aimed at developing a fluorescent-bead based SARS-CoV-2 multiplex serology assay for detection of antibody responses to the SARS-CoV-2 proteome. Methods: Proteins of the SARS-CoV-2 proteome and protein N of SARS-CoV-1 and common cold Coronaviruses (ccCoVs) were recombinantly expressed in E. coli or HEK293 cells. Assay performance was assessed in a Covid-19 case cohort (n=48 hospitalized patients from Heidelberg) as well as n=85 age- and sex-matched pre-pandemic controls from the ESTHER study. Assay validation included comparison with home-made immunofluorescence and commercial Enzyme-linked immunosorbent (ELISA) assays. Results: A sensitivity of 100% (95% CI: 86%-100%) was achieved in Covid-19 patients 14 days post symptom onset with dual sero-positivity to SARS-CoV-2 N and the receptor-binding domain of the spike protein. The specificity obtained with this algorithm was 100% (95% CI: 96%-100%). Antibody responses to ccCoVs N were abundantly high and did not correlate with those to SARS-CoV-2 N. Inclusion of additional SARS-CoV-2 proteins as well as separate assessment of immunoglobulin (Ig) classes M, A, and G allowed for explorative analyses regarding disease progression and course of antibody response. Conclusion: This newly developed SARS-CoV-2 multiplex serology assay achieved high sensitivity and specificity to determine SARS-CoV-2 sero-positivity. Its high throughput ability allows epidemiologic SARS-CoV-2 research in large population-based studies. Inclusion of additional pathogens into the panel as well as separate assessment of Ig isotypes will furthermore allow addressing research questions beyond SARS-CoV-2 sero-prevalence.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.01.20203836

ABSTRACT

Abstract Background: Reliable point-of-care (POC) diagnostics not requiring laboratory infrastructure could be a game changer in the COVID-19 pandemic, particularly in the Global South. We assessed performance, limit of detection (LOD) and ease-of-use of three antigen-detecting, rapid POC diagnostics (Ag-RDT) for SARS-CoV-2. Methods: This prospective, multi-centre diagnostic accuracy study, recruited participants suspected to have SARS-CoV2 in Germany and UK. Paired nasopharyngeal swabs (NP) or NP and/or oropharyngeal swabs (OP) were collected from participants (one for clinical real-time reverse transcription polymerase chain reaction (RT-PCR) and one for Ag-RDT testing). Performance of each of three Ag-RDTs was compared to RT-PCR overall, and according to predefined subcategories e.g. cycle threshold (CT)-value, days from symptom onset, etc. In addition, limited verification of analytical limit-of-detection (LOD) was determined. To understand the usability of each Ag-RDT a System Usability Scale (SUS) questionnaire and ease-of-use assessment were performed. Results: Between April 17th and August 25th, 2020, 2417 participants were enrolled, with 70 (3.0%) testing positive by RT-PCR. The best-performing test (SD Biosensor, Inc. STANDARD Q) was 76.6% [95% Confidence Interval (CI) 62.8-86.4] sensitive and 99.3% [CI 98.6-99.6] specific. A sub-analysis showed all samples with RT-PCR CT-values <25 were detectable by STANDARD Q. The test was considered easy-to-use (SUS 86/100) and suitable for POC. Bioeasy and Coris showed specificity of 93.1% [CI 91.0%-94.8%] and 95.8% [CI 93.4%-97.4%], respectively, not meeting the predefined target of [≥]98%. Conclusion: There is large variability in performance of Ag-RDT tests with one test showing promise. Given the usability at POC, these tests are likely to have impact despite imperfect sensitivity; however further research and modelling are needed.


Subject(s)
COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.08.20147561

ABSTRACT

Rapid large-scale testing is essential for controlling the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The standard diagnostic pipeline for testing SARS-CoV-2 presence in patients with an ongoing infection is predominantly based on pharyngeal swabs, from which the viral RNA is extracted using commercial kits followed by reverse transcription and quantitative PCR detection. As a result of the large demand for testing, commercial RNA extraction kits may be limited and alternative, non-commercial protocols are needed. Here, we provide a magnetic bead RNA extraction protocol that is predominantly based on in-house made reagents and is performed in 96-well plates supporting large-scale testing. Magnetic bead RNA extraction was benchmarked against the commercial QIAcube extraction platform. Comparable viral RNA detection sensitivity and specificity were obtained by fluorescent and colorimetric RT-LAMP using N primers, as well as RT-qPCR using E gene primers showing that the here presented RNA extraction protocol can be combined with a variety of detection methods at high throughput. Importantly, the presented diagnostic workflow can be quickly set up in a laboratory without access to an automated pipetting robot.


Subject(s)
Infections
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.05.20092288

ABSTRACT

The SARS-CoV-2 (COVID-19) pandemic poses a significant public-health problem. In order to control the pandemic, rapid tests for detecting existing infections and assessing virus spread are critical. Approaches to detect viral RNA based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) hold outstanding promise towards greatly simplified and broadly applicable testing methods. RT-LAMP assays appear more robust than qPCR-based methods and only require incubation at a constant temperature, thus eliminating the need for sophisticated instrumentation. Here, we tested a two-color RT-LAMP protocol using clinical SARS-CoV-2 samples and also established a protocol that does not require prior RNA isolation ("swab-to-RT-LAMP"). Our study is based on several hundred clinical patient samples with a wide range of viral loads, thus allowing, for the first time, to accurately determine the sensitivity and specificity of the RT-LAMP assay for the detection of SARS-CoV-2 in patients. We found that RT-LAMP can reliably detect SARS-CoV-2 samples with a qPCR threshold cycle number (CT value) of up to 30 in the standard RT-qPCR assay. We used both, either purified RNA or direct pharyngeal swab specimens and showed that RT-LAMP assays have, despite a decreased sensitivity compared to RT-qPCR, excellent specificity. We also developed a multiplexed LAMP-sequencing protocol as a validation and backup procedure to double-check the results of visual RT-LAMP assays. LAMP-sequencing is fully scalable and can assess the results of thousands of LAMP reactions in parallel. We propose decentralised COVID-19 testing as a routine to allow facilities and institutions to return to near-to-full functionality.


Subject(s)
COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.24.059667

ABSTRACT

SARS-CoV-2 is an unprecedented worldwide health problem that requires concerted and global approaches to better understand the virus in order to develop novel therapeutic approaches to stop the COVID-19 pandemic and to better prepare against potential future emergence of novel pandemic viruses. Although SARS-CoV-2 primarily targets cells of the lung epithelium causing respiratory infection and pathologies, there is growing evidence that the intestinal epithelium is also infected. However, the importance of the enteric phase of SARS-CoV-2 for virus-induced pathologies, spreading and prognosis remains unknown. Here, using both colon-derived cell lines and primary non-transformed colon organoids, we engage in the first comprehensive analysis of SARS-CoV-2 lifecycle in human intestinal epithelial cells. Our results demonstrate that human intestinal epithelial cells fully support SARS-CoV-2 infection, replication and production of infectious de-novo virus particles. Importantly, we identified intestinal epithelial cells as the best culture model to propagate SARS-CoV-2. We found that viral infection elicited an extremely robust intrinsic immune response where, interestingly, type III interferon mediated response was significantly more efficient at controlling SARS-CoV-2 replication and spread compared to type I interferon. Taken together, our data demonstrate that human intestinal epithelial cells are a productive site of SARS-CoV-2 replication and suggest that the enteric phase of SARS-CoV-2 may participate in the pathologies observed in COVID-19 patients by contributing in increasing patient viremia and by fueling an exacerbated cytokine response.


Subject(s)
COVID-19 , Viremia , Respiratory Tract Infections
SELECTION OF CITATIONS
SEARCH DETAIL